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ABSTRACT

Principal  components  analysis  (PCA)  can  facilitate  analysis  of  event-related  potential  (ERP)  components.

Geomin,  Oblimin,  Varimax,  Promax,  and  Infomax  (independent  components  analysis)  were  compared  using  a

simulated dataset. Kappa settings for Oblimin and Promax were also systematically compared.  Finally, the rotations

were also analyzed in a two-step PCA procedure, including a contrast between spatio-temporal and temporo-spatial

procedures.

Promax was found to give the best overall results for temporal PCA and Infomax was found to give the best

overall results for spatial PCA.  The current practice of kappa values of 3 or 4 for Promax and 0 for Oblimin was

supported.  Source analysis was meaningfully improved by temporal Promax PCA over the conventional windowed

difference wave approach (from a median 32.9 mm error to 6.7 mm).  It was also found that temporo-spatial PCA

produced modestly improved results over spatio-temporal PCA.
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 Principal components analysis or PCA (for reviews, see Gorsuch, 1983; Harman, 1976) has long been applied

to ERP (event-related potential) datasets (Chapman & McCrary, 1995; Dien & Frishkoff, 2005; Donchin & Heffley,

1979; Glaser & Ruchkin, 1976; Möcks & Verleger, 1991; van Boxtel, 1998) in order to obtain dependent measures

and to determine the dimensionality of effects of interest.  Although an early critique (Wood & McCarthy, 1984) led

for a time to concerns about the technique, the "misallocation of variance" problem they reported was just a way of

saying that PCA solutions are not always perfect.   Furthermore, those authors noted that even the conventional

windowed measure shares the same issue of misallocation of variance and therefore did not mean to discourage use

of PCA.  In any case, with the increasing use of high-density ERP recording montages, there has been a resurgence

of interest in this data reduction technique.  Furthermore, a series of studies (Carretie et al., 2004; Debener, Makeig,

Delorme, & Engel, 2005; Dien, Tucker, Potts, & Hartry, 1997; Dien, Frishkoff, Cerbone, & Tucker, 2003a; Dien,

Spencer, & Donchin, 2003c; Dien & O'Hare, 2008; O'Hare & Dien, 2008; O'Hare, Dien, Waterson, & Savage, 2008;

Pourtois, Delplanque, Michel, & Vuilleumier, 2008; Richards, 2004; Tapia, Carretie, Sierra, & Mercado, 2008) have

demonstrated that it can enhance source analysis efforts, a topic of current interest.

An important step in PCA is rotation, which is necessary because the factors 1 generated by the initial unrotated

solution tend to be arbitrary uninterpretable linear combinations of the true latent variables.  This happens because

the initial  "unrotated" solution follows the criterion that  each  factor  (computed in  succession)  accounts  for  the

maximum possible variance that has not been accounted for by prior factors, a criterion that is generally best met by

combinations of the latent variables (e.g., ERP components) rather than a single latent variable, which is normally

the goal of the researcher.  Rotation is a method of translating these sets of factors to mathematically equivalent sets

of linear combinations that are simpler and more interpretable (ideally just one latent variable per factor).   The

extent  to  which  this  process  can  succeed  depends  on  the  extent  to  which  the  rotation  criteria  match  the

characteristics  of the true latent  variables  (e.g.,  the ERP components).   For example,  most rotations attempt to

achieve some version of simple structure, defined as minimization of the number of variables loading on each factor

(Thurstone,  1935;  Yates,  1987),  a  criterion  that  seems  especially  appropriate  for  ERP waveforms,  which  will

typically have loadings of zero for most of the time points  (for  an example of "unrotated" versus rotated ERP

solutions, see Dien & Frishkoff, 2005).
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Despite steady progress by statisticians in refining factor analytic techniques, much of the ERP literature still

uses the basic Varimax rotation first developed in the 1950's (Kaiser, 1958).  This rotation maximizes the variance

of the factor loadings.  One of the chief limitations of this rotation procedure is that it maintains the orthogonality of

the initial unrotated solution (i.e., the resulting factors are uncorrelated with each other).  If the latent variables (e.g.,

the ERP components) are not orthogonal, the resulting mismatch between the statistical model and the true data

results in distorted factor solutions, as demonstrated in simulation studies where the true solution is known (Dien,

1998a; Dien, Beal, & Berg, 2005).  This issue of orthogonality is especially an issue for ERP datasets because, at

least for temporal PCA where the time points are the variables and the channels are the observations, the spatial

overlap of ERP components virtually guarantees that the ERP factors should be substantially correlated (see Figure

1).

There are a number of oblique rotations available that allow factors to be correlated.  One of the most widely

used is the Promax rotation (Hendrickson & White, 1964), which takes the Varimax solution as a starting point and

then relaxes  the  orthogonality  restriction  by  performing a  further  rotation in  which  orthogonality  is  no longer

enforced.  This further rotation takes the form of rotating towards a target computed as the current factor loadings

taken to a higher power.  This higher power is specified by a parameter, kappa, which is typically in the range of 2

to 4 (SAS uses 3 as the default and SPSS uses 4 as the default).  Higher kappas result in more correlated solutions,

with the appropriate kappa depending on the dataset (Hakstian & Abell, 1974; Hakstian, 1971).  This approach will

succeed to the extent that the Varimax rotation has approximated the appropriate solution.  When applied to ERP

data,  Promax has  been shown to yield improved results over  Varimax with both real  (Dien et  al.,  2003c) and

simulated (Dien, 1998a; Dien et al., 2005) data.

An alternative oblique rotation from a quite different background is Infomax (Bell & Sejnowski, 1995), which,

as implemented by the EEGlab software  (Delorme & Makeig, 2004), uses an independent components analysis

(ICA)  approach  (Hyvärinen,  Karhunen,  &  Oja,  2001).   Infomax  differs  in  a  number  of  respects  from  the

conventional PCA rotations (Dien, Khoe, & Mangun, 2007; Jennrich & Trendafilov, 2005).  When used as a rotation

following an  initial  PCA extraction,  it  can  be  treated  as  just  another  oblique rotation,  albeit  one with  special

properties since it does not seek to maximize simple structure, unlike the other rotations discussed thus far.  This

rotation maximizes  statistical  independence  (minimizing  the  extent  to  which  a  factor  raised  to  a  set  of  higher

powers,  operationalized as a logarithmic function equivalent to a Taylor series,  is correlated with other factors)

4



between the factor scores instead of seeking simple structure in the factor loadings.  Full independence would mean

that the rotation would be orthogonal but in practice the second order correlations are removed prior to the rotation

and then reintroduced  afterwards,  resulting in an oblique rotation.  The practice of removing the second order

correlations prior to the rotation (by a process termed sphering) also means that the often-repeated assertion that

Infomax operates on more information than conventional PCA rotations is, in practice,  false and so the typical

Infomax analysis is  in effect  operating on different  information, not more information.   Infomax also seeks to

maximize the non-normality of the factor scores, based on the principle that mixtures are more likely to be normally

distributed due to the central limit theorem (Hyvärinen et al., 2001, p. 9).  Both criteria influence the rotation process

in combination.  A more detailed discussion of the differences between Promax and Infomax is made elsewhere

(Dien et al., 2007).

These differences in rotation criteria are especially pertinent to the distinction between spatial and temporal

PCAs.  The former involves using channels as the variables and the latter using time points as the variables (Dien,

1998a).  Both approaches provide both spatial and temporal information, differing only in which is represented in

the  factor  loadings  and  which  is  represented  in  the  factor  scores.   Counter-intuitively,  spatial  PCA is  best  at

characterizing the time course and temporal PCA is best at characterising the spatial topography (Dien, 1998a; Dien,

Spencer,  &  Donchin,  2004).   This  distinction  is  especially  important  to  the  present  comparisons  because

traditionally the Varimax rotation (the most common procedure) has been applied as a temporal PCA whereas the

Infomax rotation (ICA) is normally applied as a spatial PCA (Debener et al., 2005; Johnson et al., 2001; Klein &

Feige, 2005; Ku et al., 2007; Lin et al., 2007; Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997; Makeig et al.,

1999a; Makeig et al., 1997b; Makeig et al., 1999b; Mehta, Jerger, Jerger, & Martin, 2009; Marco-Pallares, Grau, &

Ruffini,  2005; Olbrich et  al.,  2002; Olbrich, Maes,  Valerius,  Langosch,  & Feige, 2005; Pritchard,  Houlihan, &

Robinson, 1999; Wibral, Turi, Linden, Kaiser, & Bledowski, 2008).

For a number of reasons, the two types of analyses are not equivalent.  For example, two ERP components with

similar time courses but different scalp topographies cannot be separated by temporal PCA since the factors are

defined in terms of a specific time course (as encoded in the factor loadings) and if they have the same time course

then  they  must  be  represented  by  the  same  factor  (thus  relying  on  a  temporal  PCA  alone  to  determine  the

dimensionality of an effect is likely insufficient, cf. Lefebvre, Marchand, Smith, & Connolly, 2007) ; however, these

two ERP components  could  be  separated  by  spatial  PCA due  to  their  different  topographies  (the  presence  of
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condition and individual difference variance in the observations allows the two ERP components to be separated in

the latter case).  For this reason, a two-step PCA procedure involving first one and then the other type of analysis is

recommended over either spatial or temporal PCA alone (Dien & Frishkoff, 2005; Spencer, Dien, & Donchin, 1999;

Spencer, Dien, & Donchin, 2001).  Whether the spatial step should be used first  (Dien et al., 2003c; Dien et al.,

2004;  Fishman,  Goldman,  &  Donchin,  2008;  Friederici,  Mecklinger,  Spencer,  Steinhauer,  &  Donchin,  2001;

Goldstein, Spencer, & Donchin, 2002; Krigolson & Holroyd, 2006; Krigolson & Holroyd, 2007; Lin et al., 2007;

Lui & Rosenfeld, 2008; Rigoulot et al., 2008; Spencer et al., 1999; Spencer et al., 2001) or the temporal step should

be used first (Curran & Dien, 2003; Curran & Friedman, 2004; Foti, Hajcak, & Dien, in press; O'Hare et al., 2008;

O'Hare & Dien, 2008; Tapia et al., 2008) has not yet been determined, although this author has been informally

recommending a temporo-spatial sequence on the basis of the observation that the temporal step provides better

separation (Dien et al., 2007) and therefore seems likely to provide some additional benefit to the following spatial

step.  The relative merits of spatio-temporal and temporo-spatial two-step PCA will therefore be examined as well.

Whereas rotating to simple structure is appropriate for a temporal PCA since a given time point should only be

affected by a subset  of the ERP components,  it  is not  appropriate  for a spatial PCA where volume conduction

ensures that nearly all channels are affected by a given ERP component.  Indeed, a comparison (Dien et al., 2007) of

Promax  and  Infomax  on  simulation  datasets  revealed  that  whereas  Promax  yielded  more  accurate  results  for

temporal  PCA, Infomax yielded more accurate  results for  spatial  PCA.  This conclusion built  on prior  studies

(Makeig, Jung, Ghahremani, & Sejnowski, 2000; Richards, 2004) that reported only advantages for Infomax.  The

former study  (Makeig et al., 2000) examined only spatial PCA (conditions now known to favor Infomax).  The

second study (Richards, 2004) did not rotate the PCA solutions, a practice that results in factors that are complex

uninterpretable combinations of the latent variables and that are uncorrelated rather than oblique, both problematic.

Another study (Bugli & Lambert, 2007) that compared conventional PCA with ICA (albeit a different variant than

Infomax) also concluded in favor of ICA but it seemed to be using only spatial PCA and it is unclear what rotation it

used for the PCA, if any.

While Promax is the most commonly used oblique PCA rotation, it  is far from the only one.  It is unclear

whether its prevalence is due to merit or just inertia.  Indeed, published papers suggest there are better alternatives.

The one study (Gorsuch, 1970) that recommended the use of Promax over the alternatives did so on the basis of it

being faster to compute, a consideration that modern computers have rendered moot; however, the conclusions of
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these  papers  may  not  generalize  to  the  unique  characteristics  of  ERP  datasets.   This  manuscript  is  therefore

dedicated to evaluating two other oblique rotations that have been claimed to provide better rotations than Promax

and which have not been compared to Infomax.  

The first alternative rotation is the Oblimin rotation (the only oblique rotation offered by SPSS other than

Promax).  The original rotation  (Carroll, 1957) was later refined  (Jennrich & Sampson, 1966) in a form termed

Direct Quartimin (which corresponds to Direct Oblimin with a kappa of zero).   In this latter form, the rotation

criterion is balanced between an overly oblique criterion in which the sum of the squared cross-products of the

factor loadings is minimized and an overly orthogonal rotation criterion in which sum of the covariances of the

squared cross-products is minimized.  The degree of balance between the two criteria is controlled by a parameter

termed kappa.  Kappa is usually varied between -4 (essentially orthogonal) and  .8 (very correlated), based on the

view that values over .8 can be problematical (Harman, 1976) but see (Jennrich, 1979).  A comparison (Hakstian &

Abell, 1974) of Promax and Direct Oblimin (and some other rotations) concluded that Oblimin generally yielded

better  solutions than Promax,  although no one level  of  kappa seemed to be best  for  all  datasets.   It  has been

suggested (Gorsuch, 1983) that one might optimize the Oblimin rotation by running it multiple times with the entire

range of kappa values and then choosing the one that maximized a measure of simple structure.   In the present

report, this approach will be termed a Variable Oblimin (in that the kappa parameter is variable).

A  second  alternative  is  Geomin  (Yates,  1987),  which  operates  by  seeking  to  minimize  the  product  of  a

variable's loading (or more specifically, its reference vector coefficient) across all the factors in an effort to meet

Thurstone's original definition of simple structure.  Against a number of rotations, Geomin seemed to perform best

in one test (Browne, 2001).  Likewise, in a direct comparison with Direct Oblimin it yielded superior results (Yates,

1987); however, effectiveness of a rotation is dependent on the characteristics of the data and they have not yet been

evaluated with respect to ERP data.

A  simulation  ERP  dataset  was  therefore  constructed  to  evaluate  the  Geomin  and  Oblimin  rotations.  The

background noise was made to be realistic by using real background noise.  The simulated components were also

made to be realistic by using real data to form them.  They were also given realistic individual difference variance

both spatially and temporally by using subject averages rather than grand averages to form them.  The decision was

made to include only two simulated components in each simulation so that the cause of PCA failures could be
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understood  and  generalizations  drawn  on  the  boundary  conditions  of  these  procedures.   Using  only  pairs  of

components has the drawback of being less realistic, however.  It has already been shown elsewhere  (Dien et al.,

2007) that including more than two simulated components does not change the conclusions.

Regarding the analysis approach, a number of decisions had to be made about how to evaluate a simulated

dataset.  First of all, since the true answer is known, it was possible to precisely measure the degree of accuracy of

the reconstructions.  Of course, it will not be readily evident to a reader how much of a difference in accuracy

(e.g., .97 vs. .96) is "meaningful." Meaningfulness will be provided by presenting the effects on the bottom line

measures of ANOVA effects and source analysis.  It is up to the reader to decide whether the differences obtained

are  "meaningful."   Accuracy  of  ERP component  reconstruction  is  provided  to  facilitate  the  long-term goal  of

incrementally improving the quality of the factor analysis procedures.  Statistical tests were applied to the results

since  they  provide  a  convenient  criterion  for  identifying  noteworthy  differences;  however,  since  the  data  are

simulated, it is not clear what these statistical tests signify. The observations are not random samples from a larger

population of interest and thus significant results do not signify generalizability.  These comparisons were made

against the rotations currently recommended: Promax for temporal PCA and Infomax for spatial PCA (Dien et al.,

2007).

Finally, the accuracy and the source analysis results will be presented on a casewise basis, averaging together

the scores of each pair, rather than on the basis of individual components.  This approach will be taken partly in

order  to  reduce  the  information  load  being  induced  by  the  tables.   This  approach  will  also  be  taken  because

interpretation of the effects will focus on the pairwise relationships (e.g., a particular rotation has difficulties with

differentiating ERP components with similar scalp topographies).  Although it might be tempting to wish to know

which rotation is especially good for a particular component, this simulation study was not designed to characterize

real ERP components and so the labels should not be taken literally.  For example, the "N400" is not a negativity as

it is comprised of all the ERP activity present in the N400 window collapsed into a single dimension (although it

was extracted from an N400 dataset).  These simulated components were constructed solely to provide a diverse

range of characteristics.

In  the  present  report,  Geomin  and  Oblimin  are  compared  to  Varimax,  Promax,  and  EEGlab's  Infomax

implementation in order to ascertain whether either of them provide an improvement for ERP data with respect to
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accurately extracting individual ERP components, enhancing statistical power of ANOVAs, and optimizing source

localizations. Furthermore, the effects of different kappa levels for Promax and Oblimin are examined, as well as a

Variable Oblimin algorithm.  This simulation study also extends prior such efforts (Dien, 1998a; Dien et al., 2005;

Dien et al., 2007) by measuring not just accuracy of the factor reconstructions but also the bottom line effects on

ANOVAs and source analyses.  These comparisons will be made against the existing recommendation (Dien et al.,

2007),  based on empirical  results, that  Infomax is best  for spatial PCA and Promax is best  for temporal  PCA.

Finally,  these  analyses  will  be  extended  to  the  two-step  PCA procedure  to  verify  whether  these  observations

generalize to it and also to determine whether the spatial or the temporal step should be applied first.

METHODS

Simulation Construction

A simulation dataset was derived from a prior study (Simulation #4, Dien et al., 2007) to compare the rotation

methods.  This simulation set consists of 100 simulated sets of data, each with 16 participants, 2 conditions, 65

channels, and 125 time points (125 Hz digitization rate).  Background electroencephalographic (EEG) activity was

added from 16 real participants (55 trials per average) from a previously published study (Dien et al., 2003a). event-

related potentials (ERPs) were eliminated by using a +/- reference (Schimmel, 1967), which flips every other trial

prior to averaging.  The noise average was filtered with a 30 Hz low pass filter and average referenced (Bertrand,

Perrin, & Pernier, 1985; Dien, 1998b).   The standard deviation of the noise ranged from 0.44 to 1.38 (median 1.05)

microvolts across the epoch.

Pairs of real components were added to each dataset (Figure 2).  A total of five ERPs were obtained from prior

experiments (a visual P1, an auditory N1, an auditory P300, an auditory P2, and a visual N400).  In order to ensure

that these ERPs have a known unitary dimensionality, they were constructed from the cross-product of the time

course at the peak electrode of the grand average and the scalp topography at the peak time point of the grand

average (i.e., they had an identical time course at all electrodes and an identical scalp topography at all time points).

Realistic subject variability in time course and scalp topography was included by using the subject averages rather

than the grand average to construct these ERP components.  Ten different pairs of these components were generated,

resulting in ten replicates for each type of pair (total of one hundred simulations).  Each simulation had random

shared amplitude variability of the two ERP components (individual difference variance) as well as separate random
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variability for each individual ERP component.  In order to be able to examine misallocation of condition effects, a

modest condition effect was introduced into one of the two ERP components (amplitude was multiplied by .7 in one

condition and by 1.3 in the other condition).  The size of the condition effect was intended to be realistic to avoid

exaggerating the size of any misallocation effects (Beauducel & Debener, 2003) and to evaluate the impact of the

principal components analysis (PCA) techniques under challenging circumstances.

To  be  more  specific  about  the  amplitude  parameters,  for  each  pair,  the  first  component's  amplitude  was

multiplied by a random parameter (0.5 to 1.5) and the second component's parameter was an average of the first

amplitude parameter and a separate random number (0.5 to 1.5).  The means of the first parameter was 0.996 and

0.992 respectively for the two conditions (standard deviation of .28).  For the second parameter, the means of the

first parameter was 0.700 and 1.294 respectively for the two conditions (standard deviations of 0.14 and 0.26).

Principal Components Analysis Procedures

The ERP PCA (EP) Toolbox versions 1.2 and 1.31 (https://sourceforge.net/projects/erppcatoolkit/) were used to

analyze the simulated datasets.    The implementations used in the EP Toolkit are the EEGlab implementation of

Infomax (Delorme & Makeig, 2004), the gradient projection implementations of Geomin and Oblimin (Bernaards &

Jennrich,  2005),  and the published algorithms for  Varimax  (Kaiser,  1959) and Promax  (Hendrickson & White,

1964). The variable Oblimin algorithm follows a suggestion (Gorsuch, 1983) to apply a range of kappa values to

each analysis (in this case: -4 -3 -2 -1 0 .2 .4 .6 .8) and then use a measure of factor simplicity (in this case Hofmann,

1977) to select the optimal solution.

The PCAs were conducted using covariance matrices and Kaiser normalization of the loadings for Varimax and

Promax (Dien et al., 2005).  Based on Scree plots (Cattell, 1966; Cattell & Jaspers, 1967), six factors were retained

for spatial PCAs and seven for temporal PCAs.   The factor loadings were converted into microvolts by multiplying

the factor pattern matrix with the standard deviations of the variables (Dien et al., 1997; Dien, 2006).

Evaluation of Principal Components Analysis Results

The accuracy  of  the resulting waveforms and scalp topographies  was measured using a simple correlation

between  the  known values  and  the  factor  that  had  the  closest  match.   If  the  same  factor  matched  both  ERP

components then it was matched with the closest component and the second closest match was found for the other
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component.  Matches were made on the basis of the factor pattern matrix loadings (even for Infomax)  scaled to

microvolts (Dien, 2006) and the grand average data (matching by loadings generally yielded better results than by

factor scores for both spatial and temporal PCAs).

For tests of misallocation of variance in the analysis of variance (ANOVA) results, the peak time point (for

spatial PCA) and peak channel (for temporal PCA) of the matched ERP component was used for an ANOVA of the

factor score.  A repeated measures one-way ANOVA was conducted for each of the factors corresponding to an ERP

component.  Type I errors were defined as significant p-values for the ERP component with no condition effect and

Type II  errors  were  defined as  non-significant  p-values  for  the ERP component  with the condition effect.  For

comparison’s sake, a conventional windowed analysis was also conducted on the simulated datasets with a 50 ms

window centered on the peak time point at the peak channel.

For tests of localization accuracy, the scalp distribution as encoded in the factor pattern matrix loadings rescaled

to microvolts (for spatial PCA) and the factor scores (for temporal PCA) was utilized.  Robert Oostenveld’s Dipfit

2.2 of the FieldTrip software (http://www2.ru.nl/fcdonders/fieldtrip) was used to perform the source localization

analyses.  A three-shell boundary element model was used to provide a realistic head shape.  Symmetric paired

dipoles were used and an automatic grid scan was conducted first to identify the starting location most likely to be

close to the global minimum, prior to an iterative gradient descent search for the optimal source solution.  The

results were compared to that obtained by a source analysis of the original synthetic ERP component (prior to the

addition of the background EEG noise and without any other overlapping ERP components).  Error was defined as

the Pythagorean distance from this “correct” solution. For comparison’s sake, source analysis was also conducted on

the difference wave of the experimental ERP component using a 50 ms window centered on the peak time point.

When  evaluating  the  results,  it  should  be  kept  in  mind that  the  simulation  ERP components  were  created  by

collapsing together all the activity within the window of interest in order to produce an artificial component of

known dimensionality;  for  this  reason,  it  is  not  expected  that  a  source  solution  would  correspond  to  any  real

anatomical  source  site as  it  should reflect  the central  tendency of all  the ERP components  that  were  collapsed

together.

Robust Statistics for Inference Testing

For the inferential tests of the simulation results, SAS/IML code  (Keselman, Wilcox, & Lix, 2003) for
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conducting robust statistical tests (made available athttp://www.umanitoba.ca/faculties/arts/psychology/) was ported

to Matlab (available for download at http://homepage.mac.com/jdien07/).  A 5% symmetric trim rule was used (1

observation dropped at either extreme within each cell).  The seed for the number generation was set at 1000. The

number of simulations used for the bootstrapping routine was set at 50,000 to ensure stable p-values.  The robust

statistic (TWJt/c) is meant to improve on (more closely comply with the nominal alpha rate than) the conventional

ANOVA  by:  1)  using  boostrapping  to  estimate  the  population  distribution  rather  than  assuming  a  normal

distribution, 2) using trimmed means to be more resistant to outliers, and 3) using a Welch-James statistic to not

assume a homogenous variance-covariance structure.  Further description of the inferential issues, as they apply to

ERP data, is available elsewhere  (Dien, Franklin, & May, 2006).  P-values are rounded to the second significant

digit.  The ANOVAs of the experimental effects themselves were conducted using conventional ANOVAs since it is

expected that they are what most readers use themselves.

RESULTS

One-Step PCA

Starting with the temporal  PCA waveform results (Table 1), the current  standard, Promax, yielded the best

accuracy, along with Oblimin.  Promax was significantly better than Varimax (TWJt/c [1,89]=20.53, p<.00001) and

Geomin (TWJt/c [1,89]=6.20, p=.017) only.  Turning to the temporal PCA scalp topography results (Table 2), the

Promax rotation produced the best result, which was significantly better than Geomin (T WJt/c [1,89]=6.71, p=.025)

and Infomax (TWJt/c [1,89]=5.44, p=.025).

The waveform results for spatial PCA (Table 3) indicate a substantial advantage for the current standard, the

Infomax rotation, versus the other rotations (Varimax: TWJt/c [1,89]=66.23, p<.00001; Promax: TWJt/c [1,89]=51.08,

p<.00001; Geomin: TWJt/c [1,89]=48.26, p<.00001; Oblimin: TWJt/c [1,89]=23.03, p=.00005).  Likewise, Infomax

yielded the best performance for scalp topography (Table 4), which was significantly better than the alternatives

(Varimax: TWJt/c [1,89]=28.21, p<.00001; Promax: TWJt/c [1,89]=61.42, p<.00001; Geomin: TWJt/c [1,89]=118.91,

p<.00001; Oblimin: TWJt/c [1,89]=167.27, p<.00001).

The comparison of kappa values for Oblimin and Promax (Table 5) suggest that the default values used (zero

for Oblimin and 3 for Promax) were appropriate.  For Promax, the kappa made little difference across the values

tested for temporal PCA and even the best kappa (4) did not approach Infomax for spatial PCA.  For Oblimin, the
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kappa of zero was nearly the best, although a kappa of .2 did produce a slight increase (0.96 versus 0.95) for

waveforms using temporal PCA.  For the remaining analyses the Oblimin kappa will be kept at zero since the

difference from a kappa of .2 seems insufficient to justify moving away from the commonly accepted value of zero.

The Variable Oblimin algorithm underperformed Oblimin with a kappa of zero.

Turning to the bottom line measures in Table 6, there were no significant differences between the rotations with

respect to the Type I and Type II error rates for both spatial and temporal rotations.  The p-values appeared to be a

more sensitive measure of rotation effects.  For spatial PCA, Infomax correctly yielded significantly higher p-values

for  the  ERP  component  with  no  experimental  effect  (Varimax:  TWJt/c  [1,89]=9.20,  p=.0033;  Promax:  TWJt/c

[1,89]=65.32, p<.00001; Geomin: TWJt/c [1,89]=12.1, p=.00082; Oblimin: TWJt/c [1,89]=36.05, p<.00001) and lower

p-values for the correct ERP component than Promax (TWJt/c [1,89]=65.32, p<.00001).  Infomax also outperformed

the windowed measure for both the Type I (TWJt/c [1,89]=699.48, p<.00001) and Type II errors (TWJt/c [1,89]=20.15,

p=.00072).  For temporal PCA, Promax produced significantly higher p-values for the ERP component with no

experimental effect than Varimax (TWJt/c [1,89]=8.21, p=.0057), Geomin (TWJt/c [1,89]=7.75, p=.0066), and Oblimin

(TWJt/c  [1,89]=6.36,  p=.015).   For  the  ERP component  with  the experimental  effect,  Promax was  significantly

different  from  the  other  rotations  but  only  notably  so  from  Infomax,  where  it  was  correctly  lower  (TWJt/c

[1,89]=6.21, p=.023).

Turning to source localization analyses,  Table 6 indicates a substantial improvement by all methods over a

conventional windowed difference wave approach.  For spatial PCA, Infomax was significantly more accurate than

the alternative rotations (Varimax: TWJt/c [1,89]=44.35, p<.00001; Promax: TWJt/c [1,89]=46.39, p<.00001; Geomin:

TWJt/c [1,89]=18.01,  p=.00004; Oblimin: TWJt/c [1,89]=37.43, p<.00001).   For temporal PCA, Promax was more

accurate  than  Geomin (TWJt/c  [1,89]=9.50,  p=.0051)  and  Infomax (TWJt/c  [1,89]=11.67,  p=.0017).   Both spatial

Infomax (TWJt/c [1,89]=20954, p<.00001) and temporal Promax (TWJt/c [1,89]=21.37, p=.00002) were more accurate

than  the  windowed  difference  wave  approach.  Table  7  provides  a  comparison  between  temporal  Promax  and

conventional windowing for each case.

Two-Step PCA

Starting with the waveform results (Table 8), the current informal recommendation, Temporal Promax/Spatial

Infomax yielded the best accuracy (.97), with temporospatial rotations that started with Geomin or Oblimin being
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significantly  less  accurate  but  essentially  equivalent:  for  example,  Temporal  Geomin/Spatial  Infomax  (.965:

TWJt/c[1.0,89.0]=12.45,  p=0.0023)  and  Temporal  Oblimin/Spatial  Infomax  (.965:  TWJt/c[1.0,89.0]=14.34,

p=0.00052).   Although Spatial  Infomax/Temporal  Promax was  better  (.92)  than all  other  spatio-temporal  PCA

results  (except  for  Spatial  Oblimin/Temporal  Promax  at  .93),  it  was  notably  lower  than  the  temporo-spatial

equivalent (.97): TWJt/c(1.0,89.0)=42.07, p<0.00000001.

The results for Temporal Promax/Spatial Infomax were also strong, but less clear-cut, for scalp topography

results (Table 9).  Although the spatio-temporal results were stronger when the spatial rotation was Infomax (.90

vs. .86), they were not significantly so.  Examination of the individual results indicated that there were a substantial

number of poor results with the Infomax rotation that were not reflected in the median summary statistic of the table

but that affected the inferential statistics (even with the use of trimmed means).  It could be said that the spatial

Infomax rotations (for spatio-temporal procedures) often worked better when it worked but was not as consistent as

the Temporal Promax/Spatial Infomax procedure.  Some sense of this can be had from the casewise breakdown of

the localization results in Table 7.  Thus, this procedure was significantly better, or at least equal to, all of the spatio-

temporal  procedures.   There  were  some better  temporo-spatial  procedures  including Temporal  Varimax/Spatial

Infomax  (TWJt/c[1.0,89.0]=68.16,  p<0.00000001),  Temporal  Geomin/Spatial  Infomax  (TWJt/c  [1.0,89.0]=31.55,

p<0.00000001), and Temporal Oblimin/Spatial Infomax (TWJt/c[1.0,89.0]=12.97, p=0.00058).

Moving on to bottom line measures of localization errors (Table 10), Temporal Promax/Spatial Infomax yielded

results that were stronger or statistically equivalent to all the spatio-temporal procedures.  Results were also better

than,  or  equivalent  to,  all  the  temporal-spatial  alternatives  except  for  Temporal  Geomin/Spatial  Infomax:

TWJt/c(1.0,89.0)=5.88, p=0.021.

For performance with ANOVAs (Table 11), Temporal Promax/Spatial Infomax yielded results that were either

better or statistically comparable to all the other rotations for Type I and Type II error rates: for example, Spatial

Infomax/Temporal  Promax  Type  II  errors  (TWJt/c  [1.0,89.0]=2.02,  p=0.037).   For  raw  p-values,  Spatial

Promax/Temporal  Geomin  (TWJt/c  (1.0,89.0)=6.07,  p=0.016),  Spatial  Oblimin/Temporal  Oblimin  (TWJt/c

(1.0,89.0)=4.46,  p=0.039),  Temporal  Varimax/Spatial  Varimax  (TWJt/c  (1.0,89.0)=12.53,  p=0.0038),  Temporal

Varimax/Spatial  Promax  (TWJt/c  (1.0,89.0)=10.19,  p=0.0058),  Temporal  Varimax/Spatial  Geomin  (TWJt/c

(1.0,89.0)=5.59,  p=0.023),  Temporal  Geomin/Spatial  Infomax  (TWJt/c  (1.0,89.0)=23.64,  p=0.00026),  Temporal
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Oblimin/Spatial  Varimax  (TWJt/c  (1.0,89.0)=9.31,  p=0.0043),  Temporal  Oblimin/Spatial  Promax  (TWJt/c

(1.0,89.0)=8.60, p=0.0038),  and Temporal Oblimin/Spatial Infomax (TWJt/c (1.0,89.0)=20.65, p=0.00056) yielded

significantly lower p-values for the simulated ERP component with the true experimental effect.  For the incorrect

ERP component, only Spatial Oblimin/Temporal Promax generated a higher (good) p-value: TWJt/c (1.0,89.0)=3.98,

p=0.050.

DISCUSSION

The comparison of Geomin and Oblimin against Infomax (as implemented in EEGlab) for spatial PCA and

Promax for temporal PCA yielded a variety of results.  The present analyses strengthened an earlier recommendation

(Dien et al., 2007) to use Infomax for spatial PCA and Promax for temporal PCA by showing that the improvements

are reflected in bottom line of ANOVA and source analysis results. In general, temporal PCA proved to be a more

effective approach for optimizing source analysis than spatial PCA. Varimax was once again generally shown not to

be the optimal approach for either type of PCA.  It was also found that kappa values of 3 or 4 for Promax and 0 for

Oblimin were generally supported.  The Variable Oblimin algorithm was inferior to the normal Oblimin rotation.

Finally,  the two-step PCA results generally  support  the use of a temporo-spatial  sequence rather than a spatio-

temporal sequence.

Regarding the rotation comparisons, the results provide grounds for making empirically informed choices for

ERP datasets.   The Geomin and Oblimin rotations did not outperform the competing oblique rotations despite

promising initial reports  (Browne, 2001; Hakstian & Abell, 1974; Yates, 1987).  One possible reason is that ERP

datasets have characteristics that do not favor these particular rotation criteria.  Another possible reason is that the

gradient projection implementation of these rotation criteria (Bernaards & Jennrich, 2005) was not as efficacious as

those used in these reports.

For temporal  PCAs, the overall  best  choice  was Promax,  although Oblimin was not significantly different

(Tables 1 and 2).  Figure 3 displays an example of the reconstructed waveforms to help provide a sense for the

meaningfulness of the accuracy numbers.  Examination of the cases suggests that although Promax is overall better

for temporal PCA, Infomax does have an advantage for cases where the two components have very similar time

courses, as in Cases 3 and 5 ("case" meaning particular pairings of simulated components, as the degree of similarity
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between components is more relevant to success in separating them than is the characteristics of any individual

component).

The Infomax rotation as implemented in EEGlab was much more effective  for  spatial  PCA than the other

rotations evaluated herein (Tables 3 and 4), as found in a prior comparison with Promax (Dien et al., 2007) and thus

it continues to be the recommended approach for spatial PCAs.  The casewise numbers of Table 3 suggest that this

advantage is especially pronounced for ERP components that have a similar scalp topography, as in Cases 4 and 5.

There did not appear to be any cases that were notably more difficult for Infomax.

As seen in Table 5, these conclusions were not modified by changes in the kappa values of the two rotations as

this analysis suggested that the original kappa choices (zero for Oblimin and three for Promax) were appropriate,

although a kappa of .2 did yield an incremental improvement for Oblimin.  Such a minor change is unlikely to be

robust across different datasets and so it is recommended to continue using the commonly accepted kappa value of

zero for Oblimin.  Likewise, it appears that, for ERP data, the commonly used kappa values of 3 and 4 are both

appropriate, in contrast with a study (Cureton, 1976) of non-ERP data which concluded that 4 was optimal.

Although the accuracy measures provide some sense of rotation performance, the ultimate question is whether

the different accuracies recorded herein makes a meaningful difference for analyses.  With respect to ANOVAs of

experimental  effects,  as  seen in  Table  6,  nearly  all  rotations seemed to improve statistical  specificity  over the

conventional windowed measure (reducing Type I errors in the non-experimental component from 0.10 to between

0.00 and 0.10), although they were not statistically different.  The p-values were, however, significantly improved

by spatial Infomax and temporal PCA.  Both also yielded significant differences in p-values for the Type II rate of

the experimental component but in practice the p-values were not meaningfully different.  The Type I and Type II

effects could be mediated by either reductions in the error variance or by misallocation of the condition effect to the

wrong factor.  Since the effects were mostly seen in the Type I effects, it seems likely that they were mediated

mostly by reduction in the noise variance.  When one considers the Type I and Type II effects in aggregate, it is

apparent  that  the recommendation  to  use Infomax for  spatial  PCA and Promax for  temporal  PCA was  further

supported.

The most dramatic results of this report involve source analysis.  There were considerable improvements in

source solutions, with a 32.9 mm error with difference wave data being reduced to 17.5 mm with spatial PCA using
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Infomax and just 6.7 mm error with temporal PCA using Promax.  Given that functional cortical areas (such as

Brodmann areas) are often on the order of 10 mm across, these improvements in accuracy are of notable practical

significance.  It is therefore concluded that PCA can be quite helpful for optimizing the success of source analysis.

The advantage of PCA over the difference wave approach is that it can make use of the entire amplitude of an ERP

component rather than just the portion that differs between conditions, resulting in a higher signal-to-noise ratio.

Contrary to what intuition might suggest, temporal PCA appears to be preferable to spatial PCA for source analysis,

regardless of which rotation is used.  Of the rotations tested, Promax performed best for such temporal PCAs. Figure

4 provides some sense of how these results translate into functional neuroanatomy.

When evaluating a method, it is important to examine its failures as well as its successes in order to arrive at a

full understanding of its capabilities.  In Table 7 the efficacy of spatial Infomax is compared to temporal Promax, as

well as Varimax, is compared to the conventional windowing procedure for each of the ten cases.  In all but Case #5

the Promax solution provided a clearly improved solution over the conventional approach.  Examination of Table #1

indicates that Case #5 was especially problematic for all but the Infomax rotation.  For this case only did spatial

Infomax clearly outperform temporal Promax.

For Case #5 the difficulty was that temporal PCA essentially attempts to divide the epoch into non-overlapping

windows and the simulated P1 entirely overlaps with the simulated N1.  Further refinements of the PCA procedure

will be needed to address such situations.  It is notable that although Infomax overall did not function as well as

Promax, it did perform better in this case.  It may therefore be prudent to verify results with an Infomax analysis

when such cases of total overlap are thought to be present.

For  three  further  cases  (#1,  #6  and  #8)  temporal  Promax  yielded  improved  source  analysis  results  over

conventional windowing but the error was still unacceptably large (over 20 mm).  The commonality between these

three cases is that the experimental ERP component (the "P1" and the "P300") had a small amplitude compared to

the other ERP components (see Figure 2).  Thus, this is just an unsurprising observation that PCA may not be

sufficient to overcome the low signal-to-noise ratio of small ERP components.  For the larger components, however,

the error was quite small (less than 6 mm).

Finally,  the rotations were  evaluated  in  the  context  of  the two-step  PCA procedure  (Spencer  et  al.,  1999;

Spencer et al., 2001).  The two questions of primary concern were how it compares with the regular one-step PCA
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(which  continues  to  be  the  most  common approach)  and  whether  the  spatial  or  the  temporal  step  should  be

conducted first.  The results generally favored the use of a Temporal Promax/Spatial Infomax procedure over the

alternative two-step procedures.  The closest contender was the Temporal Geomin/Spatial Infomax procedure, which

did well in the localization analysis but not as well in the ANOVA analysis.  The spatio-temporal procedures were

consistently worse, or at best equivalent, than the Temporal Promax/Spatial Infomax procedure.

The two-step procedure was generally did not produce results as strong as that of the one-step PCA procedures

for both the ANOVA and the localization analyses.  It  is suggested that the reason is that the simulated dataset

represents a situation favoring the conventional one-step PCA.  For example, in the dataset originally used to present

the two-step PCA procedure (Spencer et al., 1999; Spencer et al., 2001), there were multiple ERP components with

nearly identical time courses, peaking at about 300 ms.  A temporal PCA cannot separate ERP components with

nearly identical time courses (Dien, 1998a) as the factors are defined in terms of the time course (all activity peaking

at  300  ms  must  necessarily  be  allocated  to  the  same  factor).   The  same  is  true  for  spatial  PCA  and  scalp

topographies.  In the present simulated dataset, most of the simulated components have different time courses and

scalp topographies.  Thus, the present report indicates that when the ERP components are sufficiently distinct, the

one-step PCA can and does have an advantage over the two-step PCA.  A examination of the case where the ERP

components were not readily separated in either domain (Case #3 with the "P300" and the "N400"), the two-step

PCA did indeed provide stronger results, with a localization error of 25.2 compared to 67.8 for temporal Promax and

70.1 for  spatial  Infomax (Table  7).   With respect  to  the  localization  results  (Table  7),  the  two-step procedure

produced much better results in one case, slightly better in one case (within 10 mm), intermediate results in two

cases, slightly worse in five cases (within 10 mm), and much worse in one case (where "case" is a particular pairing

of simulated ERP components).  Closer inspection of the worst case did not clarify why it was problematic for the

two-step procedure.

It should also be noted that one-step analyses are also preferred for certain analytical  goals.  For example,

spatial PCA allows the time course to differ between conditions and is therefore better for examining latency shifts

(Dien, 1998a; Dien et al., 2004).  Conversely, temporal PCA allows the scalp topography to shift and therefore may

be better for examining laterality effects  (Dien, 1998a) and fine-grained parametric analyses  (Dien et al., 2003a).

On the other hand, both the spatial and the temporal PCA will be vulnerable to confounding ERP components that

are similar in the spatial and the temporal domains respectively so there is always a trade-off.  Thus, the choice of
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whether  to  use  a  spatial  PCA,  a  temporal  PCA,  or  a  two-step  PCA depends  on  the  analytical  goals  and  the

characteristics of the dataset.

It is therefore recommended that a two-step PCA be used for general analysis situations, especially when the

componentry of the ERP is not fully known.  If  there is  a mix of ERP components with some best  separable

temporally and others  best  separated  spatially (as  seems likely for  most  ERP datasets)  then the two-step PCA

procedure provides a generally applicable procedure.  On the other hand, if the componentry is well-known and the

ERP components of interest can be clearly distinguished in either the spatial or the temporal domain alone, then the

corresponding one-step PCA should be used to take advantage of its stronger statistical power.  Thus, the two-step

PCA is the more general approach but its generality results in some loss of power compared to more specifically

tailored approaches.

Finally, the results generally favored the use of a temporo-spatial sequence to a spatio-temporal sequence for

two-step PCA.  This may be understood in the following manner.  Because the temporal Promax step generally

produced cleaner separations than the spatial Infomax step, it is beneficial to apply it first.  If one applies the less

effective step first then the resulting factors will be more likely to be mixtures of the underlying ERP components.

One might, for example, end up with two spatial factors, each a mix of the P2 and the P3.  A subsequent temporal

PCA step would result in four factors, two each for the P2 and the P3.  Furthermore, when the second temporal step

was  applied,  the  mixing  of  the  two ERP  components  increases  the  likelihood that  the  second  step  would  be

unsuccessful in correctly separating the ERP components in each of the two initial spatial factors.   If the more

effective temporal PCA step had been applied first then the initial two factors would have been a more-or-less pure

P2 and P3 factor and the spatial step would not even be needed.

These  conclusions must  be  tempered  by some caveats.   The  efficacy  of  the conventional  difference  wave

approach will vary as a function of the size of the condition effect; a larger condition effect will increase the size of

the signal compared to the background noise.  In the present case, the signal was moderate (100% modulation).  It is

also not claimed that this analysis constitutes a test of localization accuracy per se.  The comparison in the present

case is between the "correct" result obtained under ideal conditions (no background noise or other ERP components)

and the result under non-ideal conditions as addressed by PCA and conventional difference waves.  Thus, these

results address only the errors introduced by background noise, overlapping ERP components, and inaccuracies in
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the PCA solutions, and not other influences (such as the quality of the head model).  Thus, while the simulation

results provide empirical guidance on which rotations provide more optimal solutions, they should not necessarily

be taken as indicating that the accuracy of such a procedure would be 6 mm or so for real data.  The present results

also do not pertain to analyses where temporal PCA is not an option (as in frequency-domain data), where spatial

PCA, and hence the Infomax rotation, are clearly preferable.

It is also important to note that the source solutions should not be taken literally as being likely generators for

the simulated ERP components.  The process for constructing the simulated components almost certainly fused

together multiple ERP components.  No effort was made during the process to obtain a pure ERP component and the

procedure  used  to  generate  unidimensional  simulated  components  would  make  it  impossible  to  separate  the

constituent  ERP components.   The  challenge  of  isolating  pure  ERP components  will  be  left  to  future  studies

explicitly designed to do so and the current results may help to do so more effectively.

In conclusion, these results reinforce prior reports of the utility of PCA for ERP analysis.  Furthermore, they

reinforce the existing conclusion that Promax is preferable for temporal PCA and Infomax for spatial PCA.  Geomin

and Oblimin did not prove to be better alternatives to Promax, contrary to published reports, at least for ERP data.

The present results also strengthen the argument that PCA can provide a promising approach for optimizing source

analyses.  Finally, the ultimate recommendation is not so much to favor Promax over Infomax as to suggest that they

each be used in a two-step PCA approach  (Spencer et al., 1999), using an initial temporal Promax followed by a

spatial Infomax (see Franklin, Dien, Neely, Waterson, & Huber, 2007) when a broadly general approach is needed,

while  one-step  temporal  Promax  and  spatial  Infomax  can  provide  more  powerful  tools  if  chosen  to  fit  the

characteristics of the dataset.
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FOOTNOTES

1) Although it is customary to term the statistical variables produced by both PCA and ICA "components", since

features of the ERP are also termed "components", in this treatment they will be termed "factors" instead to avoid

confusion.
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C1 C2 Vmax Pmax Imax Gmin Omin

1 N400 P1 0.97 0.98 0.96 0.98 0.96

2 N400 N1 0.97 0.99 0.95 0.99 0.97

3 N400 P300 0.67 0.67 0.90 0.71 0.71

4 N400 P2 0.96 0.98 0.91 0.97 0.98

5 P1 N1 0.65 0.72 0.96 0.62 0.59

6 P1 P300 0.92 0.94 0.80 0.86 0.87

7 P1 P2 0.96 0.96 0.92 0.96 0.97

8 N1 P300 0.87 0.84 0.83 0.89 0.89

9 N1 P2 0.97 0.98 0.93 0.98 0.99

10 P300 P2 0.93 0.93 0.74 0.92 0.94

Totals Median 0.94* 0.95# 0.92 0.94* 0.95

Totals SD 0.12 0.11 0.07 0.12 0.12

Table 1.  Waveform Results for Temporal PCA.  C1 and C2 are the two simulated components in the

dataset. Imax = Infomax ICA rotation.  Omin = Oblimin rotation.  Gmin = Geomin rotation.  Pmax =

Promax rotation.  Vmax = Varimax rotation.  The values are the accuracy of the reconstructions of the time

courses,  expressed  as  the  correlation  between  the  scaled  factor  results  and  the  matching  original

component.  The values are the median value of the ten replications.  For each analysis, the accuracy was

calculated for both simulated components and the mean accuracy of the two factors was recorded.  The

bottom rows are the median score across  the entire  100 simulations and the standard deviation of the

scores. # = Comparison score.  * = Significantly different from the comparison score.



C1 C2 Vmax Pmax Imax Gmin Omin

1 N400 P1 0.98 0.97 0.98 0.97 0.97

2 N400 N1 0.94 0.98 0.97 0.98 0.98

3 N400 P300 0.68 0.59 0.78 0.80 0.82

4 N400 P2 0.98 0.98 0.98 0.98 0.98

5 P1 N1 0.95 0.96 0.91 0.90 0.85

6 P1 P300 0.94 0.87 0.84 0.90 0.90

7 P1 P2 0.99 0.99 0.98 0.99 0.99

8 N1 P300 0.86 0.78 0.74 0.89 0.90

9 N1 P2 0.98 1.00 0.96 0.99 1.00

10 P300 P2 0.91 0.90 0.62 0.89 0.87

Totals Median 0.95 0.97# 0.92* 0.94* 0.94

Totals SD 0.10 0.12 0.12 0.06 0.08

Table 2.  Scalp Topography Results for Temporal PCA.  C1 and C2 are the two simulated components in

the dataset. Imax = Infomax ICA rotation.  Omin = Oblimin rotation.  Gmin = Geomin rotation.  Pmax =

Promax rotation.  Vmax = Varimax rotation.  The values are the accuracy of the reconstructions of the

scalp topographies, expressed as the correlation between the scaled factor results and the matching original

component.  The values are the median value of the ten replications.  For each analysis, the accuracy was

calculated for both simulated components and the mean accuracy of the two factors was recorded.  The

bottom rows are the median score across  the entire  100 simulations and the standard deviation of the

scores. # = Comparison score.  * = Significantly different from the comparison score.



C1 C2 Vmax Pmax Imax Gmin Omin

1 N400 P1 0.83 0.80 0.94 0.82 0.90

2 N400 N1 0.89 0.88 0.92 0.88 0.87

3 N400 P300 0.81 0.88 0.83 0.86 0.86

4 N400 P2 0.56 0.56 0.92 0.59 0.75

5 P1 N1 0.58 0.88 0.91 0.89 0.97

6 P1 P300 0.63 0.62 0.58 0.62 0.64

7 P1 P2 0.76 0.75 0.94 0.75 0.93

8 N1 P300 0.74 0.73 0.79 0.77 0.70

9 N1 P2 0.92 0.91 0.92 0.91 0.88

10 P300 P2 0.61 0.53 0.66 0.52 0.51

Totals Median 0.74* 0.75* 0.90# 0.77* 0.85*

Totals SD 0.13 0.13 0.12 0.13 0.14

Table 3.  Waveform Results for Spatial PCA.  C1 and C2 are the two simulated components in the dataset.

Imax = Infomax ICA rotation.  Omin = Oblimin rotation.  Gmin = Geomin rotation.  Pmax = Promax

rotation.  Vmax = Varimax rotation.  The values are the accuracy of the reconstructions of the time courses,

expressed as the correlation between the scaled factor results and the matching original component.  The

values are the median value of the ten replications.  For each analysis, the accuracy was calculated for both

simulated components and the mean accuracy of the two factors was recorded.  The bottom rows are the

median score across the entire 100 simulations and the standard deviation of the scores. # = Comparison

score.  * = Significantly different from the comparison score.



C1 C2 Vmax Pmax Imax Gmin Omin

1 N400 P1 0.81 0.77 0.90 0.76 0.78

2 N400 N1 0.90 0.84 0.89 0.81 0.81

3 N400 P300 0.66 0.68 0.84 0.69 0.63

4 N400 P2 0.83 0.76 0.89 0.76 0.74

5 P1 N1 0.63 0.60 0.88 0.66 0.78

6 P1 P300 0.88 0.85 0.74 0.82 0.78

7 P1 P2 0.85 0.84 0.96 0.84 0.83

8 N1 P300 0.88 0.87 0.90 0.86 0.76

9 N1 P2 0.93 0.90 0.91 0.81 0.82

10 P300 P2 0.49 0.76 0.83 0.68 0.82

Totals Median 0.84* 0.81* 0.88# 0.80* 0.78*

Totals SD 0.14 0.11 0.06 0.09 0.06

Table 4.  Scalp Topography Results for Spatial PCA.  C1 and C2 are the two simulated components in the

dataset. Imax = Infomax ICA rotation.  Omin = Oblimin rotation.  Gmin = Geomin rotation.  Pmax =

Promax rotation.  Vmax = Varimax rotation.  The values are the accuracy of the reconstructions of the

scalp topographies, expressed as the correlation between the scaled factor results and the matching original

component.  The values are the median value of the ten replications.  For each analysis, the accuracy was

calculated for both simulated components and the mean accuracy of the two factors was recorded.  The

bottom rows are the median score across  the entire  100 simulations and the standard deviation of the

scores. # = Comparison score.  * = Significantly different from the comparison score.



Rotation Temp

Waves

Temp

Topo

Spat

Waves

Spat

Topo

Promax 2 0.95(0.12) 0.97(0.14) 0.75(0.13) 0.82(0.13)

Promax 3 0.95(0.11) 0.97(0.12) 0.75(0.13) 0.81(0.11)

Promax 4 0.95(0.11) 0.97(0.12) 0.76(0.13) 0.80(0.10)

Oblimin -4 0.91(0.12) 0.94(0.11) 0.89(0.14) 0.76(0.05)

Oblimin -3 0.91(0.12) 0.94(0.11) 0.87(0.14) 0.76(0.05)

Oblimin -2 0.92(0.11) 0.94(0.12) 0.87(0.14) 0.76(0.05)

Oblimin -1 0.93(0.10) 0.94(0.11) 0.86(0.14) 0.77(0.06)

Oblimin 0 0.95(0.13) 0.94(0.08) 0.85(0.14) 0.78(0.06)

Oblimin .2 0.96(0.13) 0.94(0.08) 0.85(0.14) 0.79(0.06)

Oblimin .4 0.95(0.11) 0.83(0.13) 0.84(0.14) 0.78(0.09)

Oblimin .6 0.88(0.10) 0.71(0.20) 0.83(0.12) 0.76(0.09)

Oblimin .8 NaN NaN NaN NaN

Variable Oblimin 0.94(0.13) 0.94(0.10) 0.83(0.13) 0.76(0.09)

Table  5.   Factor  Results  for  Different  Rotation  Parameters  for  Promax  and  Oblimin  Rotations.   The

Oblimin and Promax parameters are for kappa.  Temp = temporal PCA.  Spat = spatial PCA.  Waves =

timecourse.   Topo = scalp topography.  The values are the accuracy of the reconstructions of the time

course  and  scalp  topography,  expressed  as  the  correlation  between  the  scaled  factor  results  and  the

matching original component.  The values are the median value across all 100 simulations with the standard

deviation in parentheses.  For each analysis, the accuracy was calculated for both simulated components

and the mean accuracy of the two factors was recorded.  NaN means that the rotation failed, resulting in

"not a number."



PCA Type Rotation Type  I

Errors

Type  II

Errors

Type  I

p-

values

Type  II

p-

values

Localization

Error

Spatial Varimax 0.00 0.34 0.544* 0.003 37.0 (24.9)*

Promax 0.09 0.32 0.391* 0.007* 38.7 (21.2)*

Infomax 0.00# 0.34# 0.648# 0.004# 17.5 (30.2)#

Geomin 0.04 0.34 0.538* 0.008 38.9 (15.4)*

Oblimin 0.10 0.40 0.417* 0.007 46.1 (23.4)*

Temporal Varimax 0.08 0.31 0.390* 0.005* 11.8 (24.3)

Promax 0.02# 0.31# 0.545# 0.006# 6.7 (22.5)#

Infomax 0.08 0.36 0.420 0.021* 18.0 (24.2)*

Geomin 0.02 0.29 0.383* 0.004* 21.0 (29.4)*

Oblimin 0.04 0.32 0.394* 0.006* 8.4 (27.6)

Conventional 0.10 0.34 0.305* 0.006* 32.9 (21.1)*

Table 6.  Effects of Rotation on ANOVA and Source Localization errors.  The Type I Errors were the

proportion of false positives for the ERP factor with no condition effect.   The Type II Errors were the

proportion of false negatives for the ERP factor with a condition effect.  The Type I and Type II p-values

are the median of the actual p-values, so higher is better for the inactive component and lower is better for

the active component.  The localization error is the median distance in mm from the correct source solution

for the experimental ERP component with the standard deviation in parentheses.  The conventional row

reports the results using a conventional windowed measure (50 ms window) for the ANOVAs and source

localization error based on the difference wave for the experimental ERP component.  # = Comparison

score.  * = Significantly different from the comparison score.



C1 C2 Spatial

Infomax

Temporal

Promax

Spatial

Varimax

Temporal

Varimax

T-Pmax/   S-

Infomax

Wind-

owed

1 N400 P1 45.5 32.1 60.1 31.8 33.1 33.4

2 N400 N1 19.2 5.8 26.3 8.1 29.0 12.6

3 N400 P300 70.1 67.8 85.6 86.1 25.2 81.1

4 N400 P2 4.5 4.2 39.5 7.0 9.9 11.4

5 P1 N1 17.4 52.9 37.4 53.2 18.8 13.7

6 P1 P300 70.3 23.8 71.3 17.2 21.3 93.2

7 P1 P2 2.3 3.4 24.7 2.9 8.5 10.8

8 N1 P300 72.8 26.3 57.7 37.2 79.9 93.8

9 N1 P2 2.4 3.8 19.3 9.1 10.6 11.7

10 P300 P2 2.3 3.7 25.7 4.1 11.1 12.6

Table 7.  Localization Error For Each Case.  C1 and C2 are the two simulated components in the dataset.

Figures  are  the  distance  in  mm,  average  of  the  two  components,  median  such  score  across  the  ten

replicates.   The  conventional  row reports  the  results  using  a  conventional  windowed measure  (50  ms

window) based on the difference wave for the experimental ERP component.



Spatial

Varimax

Spatial

Promax

Spatial

Infomax

Spatial

Geomin

Spatial

Oblimin

Spatial First

Temporal Varimax
0.87* 0.89* 0.91* 0.88* 0.92*

Temporal Promax
0.87* 0.88* 0.92* 0.88* 0.93*

Temporal Infomax
0.77* 0.76* 0.84* 0.77* 0.81*

Temporal Geomin
0.87* 0.87* 0.93* 0.88* 0.91*

Temporal Oblimin
0.87* 0.87* 0.92* 0.87* 0.92*

Temporal First

Temporal Varimax
0.96* 0.96* 0.96* 0.96* 0.96*

Temporal Promax
0.97 0.97 0.97# 0.97 0.97

Temporal Infomax
0.92* 0.92* 0.92* 0.92* 0.92*

Temporal Geomin
0.97* 0.97* 0.97* 0.97* 0.97*

Temporal Oblimin
0.97* 0.97* 0.97* 0.97* 0.97*

Table 8. Waveform Results for Two-Step PCA. The values are the accuracy of the reconstructions of the

time courses,  expressed  as  the correlation  between the scaled  factor  results  and  the  matching original

component.  The numbers are the median values.  For each analysis, the accuracy was calculated for both

simulated components and the mean accuracy of the two factors was recorded.  # = Comparison score.  * =

Significantly different from the comparison score.



Spatial

Varimax

Spatial

Promax

Spatial

Infomax

Spatial

Geomin

Spatial

Oblimin

Spatial First

Temporal Varimax
0.86 0.84* 0.90 0.83* 0.79*

Temporal Promax
0.86 0.84* 0.90 0.83* 0.79*

Temporal Infomax
0.86 0.84* 0.90 0.83* 0.79*

Temporal Geomin
0.86 0.84* 0.90 0.83* 0.79*

Temporal Oblimin
0.86 0.84* 0.90 0.83* 0.79*

Temporal First

Temporal Varimax
0.89 0.82* 0.91* 0.84* 0.80*

Temporal Promax
0.88 0.84* 0.86# 0.81* 0.79*

Temporal Infomax
0.89 0.83* 0.89 0.85* 0.80*

Temporal Geomin
0.89 0.84* 0.87* 0.83* 0.79*

Temporal Oblimin
0.88 0.83* 0.88* 0.83* 0.79*

Table 9. Scalp Topography Results for Two-Step PCA. The values are the accuracy of the reconstructions

of the scalp topographies, expressed as the correlation between the scaled factor results and the matching

original component.  The numbers are the median values.  For each analysis, the accuracy was calculated

for both simulated components and the mean accuracy of the two factors was recorded.  # = Comparison

score.  * = Significantly different from the comparison score.



Spatial

Varimax

Spatial

Promax

Spatial

Infomax

Spatial

Geomin

Spatial

Oblimin

Spatial First

Temporal Varimax
37.5* 38.7* 20.2 32.9* 47.6*

Temporal Promax
37.5* 38.7* 17.8 31.3* 47.6*

Temporal Infomax
37.1* 38.7* 26.0 32.8* 47.6*

Temporal Geomin
36.3* 38.7 16.1 34.0* 47.5*

Temporal Oblimin
37.5* 38.7* 21.7 31.9* 47.6*

Temporal First

Temporal Varimax
26.3* 31.6* 17.0 32.5* 54.5*

Temporal Promax
24.5* 29.1* 18.8# 31.0* 38.8*

Temporal Infomax
31.5* 32.0* 23.9 27.0* 52.1*

Temporal Geomin
28.6* 33.0* 18.1* 32.9* 48.4*

Temporal Oblimin
31.6* 32.6* 19.0 30.5* 43.1*

Table 10.  Localization Error Results for Two-Step PCA.  The localization error is the median distance in

mm from the correct source solution for the experimental ERP component. # = Comparison score.  * =

Significantly different from the comparison score.



Spatial

Varimax

Spatial

Promax

Spatial

Infomax

Spatial

Geomin

Spatial

Oblimin

Spatial First

Temporal Varimax 0.01/0.34 0.02/0.33* 0.05/0.32 0.02/0.32 0.12/0.36*

Temporal Promax 0.05/0.37 0.05/0.33* 0.08/0.33* 0.03/0.35 0.10/0.35

Temporal Infomax 0.07/0.40* 0.11/0.38* 0.04/0.33* 0.13/0.43* 0.15/0.37

Temporal Geomin 0.06/0.39* 0.07/0.36* 0.07/0.34 0.06/0.36* 0.10/0.36*

Temporal Oblimin 0.10/0.37 0.10/0.33* 0.10/0.33* 0.11/0.33 0.10/0.35

Temporal First

Temporal Varimax 0.05/0.32 0.10/0.30 0.02/0.30 0.06/0.31 0.11*/0.35*

Temporal Promax 0.02/0.31 0.08/0.30 0.04#/0.31# 0.03/0.32 0.09/0.35

Temporal Infomax 0.03/0.43 0.11/0.36 0.14*/0.41* 0.12/0.39* 0.10/0.51*

Temporal Geomin 0.05/0.33 0.09/0.32 0.10/0.33* 0.03/0.33* 0.08/0.35

Temporal Oblimin 0.04/0.34 0.09/0.32 0.08/0.32 0.03/0.34 0.09/0.36*

Table 11.  ANOVA Error Results for Two-Step PCA. The first number is the Type I error rate and the

second number is the Type II error rate.  The Type I Errors were the proportion of false positives for the

ERP factor with no condition effect.  The Type II Errors were the proportion of false negatives for the ERP

factor with a condition effect.  # = Comparison score.  * = Significantly different from the comparison

score.



Spatial

Varimax

Spatial

Promax

Spatial

Infomax

Spatial

Geomin

Spatial

Oblimin

Spatial First

Temporal Varimax 0.476/0.005 0.520/0.004 0.542/0.005 0.546/0.007 0.427*/0.009*

Temporal Promax 0.575/0.010* 0.627/0.007* 0.540/0.007 0.603/0.010 0.504*/0.010

Temporal Infomax 0.393*/0.028 0.429*/
0.018*

0.565/0.009 0.417*/
0.030*

0.524/0.014

Temporal Geomin 0.517/0.016* 0.635/0.006* 0.599/0.005 0.616/0.008 0.467*/0.007

Temporal Oblimin 0.502/0.011 0.562/0.009 0.552/0.006 0.531/0.013* 0.388*/0.008*

Temporal First

Temporal Varimax 0.394*/
0.007*

0.426*/
0.004*

0.475/0.009 0.513/0.007* 0.441*/0.013

Temporal Promax 0.511/0.006 0.569/0.006 0.485#/
0.009#

0.592/0.005 0.573/0.013*

Temporal Infomax 0.478/0.034 0.445/0.021* 0.462/
*0.025*

0.450/0.028 0.378*/0.051

Temporal Geomin 0.538/0.005 0.532/0.005 0.496/0.007* 0.597/0.006 0.571/0.018

Temporal Oblimin 0.549/0.005* 0.577/0.005* 0.496/0.008* 0.621/0.005 0.571/0.011*

Table 12.  ANOVA p-Value Results for Two-Step PCA.  The first number is the p-value for the simulated

component with no condition effect (larger is better) and the second number is the p-value for the simulated

component with a condition effect (smaller is better).  # = Comparison score.  * = Significantly different

from the comparison score.



FIGURE LEGENDS

Figure 1. Effects of scalp topography on component correlations in temporal PCA.  The figure indicates the

component correlations due to similarity of scalp topography for a series of dipole locations with a second

dipole located at Cz.  Dipole Simulator was used to generate the expected scalp topography from each of

these dipole locations for the 64-channel montage of the present study.  Results may differ depending on

the montage used.  Phi indicates the Phi coordinate of the dipole in spherical coordinates.





Figure 2. Simulated ERP Components. The scalp topographies represent the voltage map at the peak time

point.  The time courses represent the voltages at the peak channel.  The "N400" component is fused with

other ERP components that make it overall a positivity at the vertex.  The time course is negative since the

peak channel is at a lateral electrode site that is negative at the peak time.





Figure 3.  Example Effects of Rotations on Waveforms.  The waveforms are for the temporal PCA of the

first replicate of Case #9, which consists of the N1 and the P2 components.  The "Components" box shows

the two artificial components (N1 gray and P2 black).  The dips at the edges of the P2 peak are an artifact

of the method of its construction.  The next two (N1 and P2 Peak Channel) show the grand average of the

simulated data at the peak channels for the P2 and the P3 components.  The condition effect can be seen in

the P2 component (the gray and black lines are the two conditions).  The remaining waveforms show the

factor reconstructions of the two ERP components, scaled to microvolts.  Since factor loadings apply to all

channels,  no matter  how small  or  large  the ERP component  at  that  channel,  they necessarily  have no

inherent absolute scaling and are displayed scaled to maximum values.  Misallocation of variance can be

seen when one factor has non-zero loadings during the time points corresponding to the other component.

The numbers are the accuracy scores as computed for Table 1.



Figure 4.  Example Effects of Rotations on Source Analysis.  The source analyses are for the temporal PCA

of  Case  #2,  which  consists  of  the  N1 and the  N400 components.   The  solutions  are  for  the  N1,  the



component with the experimental effect.  The locations are projected onto the x-y plane. Keep in mind that

the simulation components are constructed from all ERP activity in the window and so the source analysis

should not be considered a true solution for any of the real N1 components, of which there are many (see

Näätänen & Picton, 1987).  The No-Noise result is the solution under ideal conditions with no background

noise  and  no  other  components  and  hence  represents  the  "correct"  solution  insofar  as  successfully

excluding the effects of these other aspects of the data on the source solution.  For the remaining solutions,

each red dot represents one of the ten replicates.  The Windowed result is the solution using a conventional

difference wave.  The remaining solutions are the effects of using the various oblique rotations under both

spatial and temporal approaches.  The median error in mm for each solution is provided in the upper left

hand corner.   The  median  error  is  based  on  all  three  dimensions whereas  the  figures  only  show two

dimensions so they may not correspond exactly. The blue cross-hairs denote the origin.


